INEUPATORIOL, A THIOPHENE ANALOGUE OF ICHTHYOTHEREOL. FROM INULA EUPATORIOIDES

ROBINDRA N. BARUAH, RAM P. SHARMA, JOGENDRA N. BARUAH, DIANA MONDESHKA,* WERNER HERTZ† and KINZO WATANABE†

Regional Research Laboratory, Jorhat 785 006, Assam, India; *High Institute of Chemical Technology, 1156 Sofia, Bulgaria; †Department of Chemistry, The Florida State University, Tallahassee, FL 32306, U.S.A.

(Received 22 June 1981)

Key Word Index—Inula eupatorioides; Inuleae; Compositae; thiophenic polyacetylene; pyranoid polyacetylene; ichthyothereol analogue.

Abstract—Ineupatoriol, a thiophene analogue of ichthyothereol, was isolated from *Inula eupatorioides*. The absolute stereochemistry is that of ichthyothereol.

INTRODUCTION

An earlier article by some of us [1] concerned itself with the structure determination of several germacranolides from the CHCl₃ extract of *Inula eupatorioides* DC. We now describe the isolation and structure determination of the acetylenic 3-hydroxytetrahydropyran 1a from the non-polar part of the extract. 1a, which we have named ineupatoriol, is a thiophene analogue of the potent fish poison ichthyothereol 4a [2-4].

RESULTS AND DISCUSSION

Ineupatoriol (1a), C₁₄H₁₆O₂S (high resolution mass spectrometry), was a relatively unstable noncrystalsecondary alcohol which furnished line monoacetate 1b, C₁₆H₁₈O₂S (IR bands at 3590 and 3450 replaced by carbonyl band at 1730 cm⁻¹, paramagnetic shift of a one-proton multiplet from δ 3.39 to 4.63). Recognition that 1a was a methyl 2thienylacetylene came from a comparison of its ¹H NMR spectrum (Table 1) with that of its hexahydro derivative 2 and from the ¹³C NMR spectrum (see Experimental). As a result of the reduction, the group MeC≡C- (very weak IR band at 2240 cm⁻¹, ¹H NMR signal at δ 2.07, ¹³C NMR signals at δ 4.66 q, 90.97 s and 73.28 s [5]) was transformed into CH₃CH₂CH₂- (numbering as in final structure) with the chemical shift of H-3 indicating that it was allylic. Simultaneously, a trans double bond of type $\mathring{CH}=\mathring{CH}-\mathring{CH}R_1R_2$ ($J_{8,9}=16$ Hz) which because of the chemical shift of H-8 and H-9 (δ 6.74 and 6.06) had to be part of a conjugated system was reduced to CH₂CH₂CHR₁R₂. These changes were particularly evident in the NMR spectrum (C₆D₆) of the Jones oxidation product 3 which was used for extensive decoupling experiments. In 3 (but not in 1a or 1b), H-3 and H-8 were allylically coupled to two mutually coupled protons H-5 and H-6 ($J_{5,6} = 3$ Hz) whose signals (δ 6.52 and 6.59) appeared somewhat upfield from their position in Ia, b and were identified with

two β -hydrogens on a thiophene ring. The upfield shift was ascribed to saturation of the conjugated double and triple bonds. Consequently, ineupatoriol was a 2.5-disubstituted thiophene. H-10 of ineupatoriol was further coupled to the proton on the carbon carrying the secondary hydroxyl group (H-11). The chemical shift of H-10 (δ 3.59) indicated that C-10 also carried the second, remaining oxygen atom of ineupatoriol in the form of an ether bridge which was in turn attached to a methylene (carbon triplet at δ 67.56). As only one methyl group was present (¹H and ¹³C NMR spectra), ineupatoriol was a 2-substituted 3-hydroxytetrahydropyran of formula 1a. This was verified by deriving the sequence H-12-H-14 in 3 through decoupling (Table 1). The carbon chemical shift changes accompanying the conversion of 1a to 1b (see Experimental) also agreed with this formulation. The magnitude of $J_{10,11}$ (9 Hz in 1a, 10 Hz in 1b) was comparable to that reported for 4b (9 Hz) [3, 4], hence the relative stereochemistries were the same (H-10, H-11 trans). The absolute configuration of ichthyothereol, first deduced from the negative Cotton effect of the saturated ketone 5 [2, 3], was confirmed [4] by degradation of 4b to the enantiomer 6 of a substance derived from D-glucose. As the CD spectrum of hexahydroketone 3 also exhibited a negative Cotton effect ($\Delta \epsilon_{298} - 0.682$) the absolute configuration of ineupatoriol was the same as that of ichthyothereol and was correctly represented by 1a.

Ichthyothereol and its acetate have so far been found in *Ichthyothere terminalis* [2, 3], in various *Dahlia* [2, 4, 7] and *Clibadium* species [8, 10] and in some Anthemidae [11-13], but not in Inuleae and the combination of a thiophene ring with a 3-hydroxy-pyranoid end-group appears to be new.

EXPERIMENTAL

The extraction of *I. eupatorioides* has been described [1]. Fractions 5 and 6 (C_6H_6 -EtOAc, 9:1) and 7-9 (C_6H_6 -EtOAc, 4:1) which exhibited one major spot on TLC were combined (2 g from 1.5 kg of above-ground parts) and rechromatographed over 100 g Si gel (60-120 mesh, BDH India),

Table 1. ¹H NMR data for compounds 1-3 (270 MH_z, CDCl₃, TMS as internal standard)*

	1a	1b	2	$2\left(C_6D_6\right)$	$3(C_6D_6)$
H-1†	2.07 s	2.07 s	0.95 t (7)	0.83 t (7.5)	0.82 t (7)
H-2‡		_	1.67 sext (7)	1.56 sext (7)	1.55 sext (7)
H-3‡			$2.71\ t(br)(7)$	2.58 t(br) (7)	$2.56 \ t(br) (7)$
H-5	6.94 d (3)	6.94 d(3)	$6.39 \ d(br)(3)$	$6.64 \ d(br) (3)$	$6.52 \ d(br) (3)$
H-6	6.79 d (3)	6.78 d (3)	6.56 d(br)(3)	6.54 d(br)(3)	$6.59 \ d(br)(3)$
H-8	6.74 d (16)	6.67 d (16)	2.9 m‡	3.58 s‡‡	$2.93 \ m^{\ddagger}$
H-9a	6.06 dd(16,6)	5.95 dd (16,7)	2.19 m	2.27 m	2.30 dtd (15, 8, 3.5)
H-9b			2.10 m	1.87 m	2.04 dtd (15, 7, 9)
H-10	3.59 dd (9,7)	3.80 dd (10, 7)	3.03 td (9, 2.5)	3.0 m	3.50 dd (9, 3.5)
H-11	3.39 m	4.63 td	3.31 m	3.1 m	
H-12a	,	2.21 m	,		2.14 m [§]
H-12b	undetermined	1.55 s	undetermined	undetermined	1.76 <i>m</i> [∥]
H-13a	ţ	2.05 m	l	(1.55 m**
H-13b		1.74 m			1.25 m††
H-14a	3.95 dm (11)	3.98 m (11)	3.90 dm (12)	$3.71 \ dd(br)(11,5)$	3.58 dddd**
H-14b	3.39 m	3.45 td (11, 4)	3.31 m	3.0 m	3.07 ddd

^{*}Coupling constants (Hz) in parentheses.

$$MeC = \frac{3}{C} - \frac{1}{C} + \frac{1}{C}$$

[†]Intensity three protons.

[‡]Intensity two protons.

 $^{{}^{\}S}J_{12a,12b} = 16, \ J_{12a,14a} = 1.5 \text{ Hz}.$

 $J_{12b,13a} = 10.5, J_{12b,13b} = 6.5 \text{ Hz}.$ $**J_{13a,14b} = 5.5, J_{13a,14b} = 11 \text{ Hz}.$ $††J_{13b,14a} = 4, J_{13b,14b} = 3.5 \text{ Hz}.$ $‡‡J_{14a}, J_{14b} = 11 \text{ Hz}.$

100 ml fractions being collected as follows: fractions 1-9 (C_6H_6) , 10-15 $(C_6H_6$ -EtOAc, 9:1), 16-20 $(C_6H_6$ -EtOAc, 4:1), 21-25 (C₆H₆-EtOAC, 2:1). Fractions 6-9 which did not crystallize were combined to give 1a (0.5 g): UV $\lambda_{\text{max}}^{\text{EiOH}}$ nm: 211, 244, 273 (sh), 310, 322 (sh) (log ϵ 4.06, 3.69, 3.70, 4.29, 4.18) $(c3.79 \times 10^{-5})$; IR $\nu_{\text{max}}^{\text{CHCl}_4} \text{ cm}^{-1}$ (after rechromatography): 3590 (OH), 3450 (bonded OH), 3070 (weak), 2940, 2860, 2240 (weak, C≡C), 1650, 1620, 1530 (weak), 1470, 1455, 1445, 1100, 1035, 970. [Calc. for C₁₄H₁₅O₂S: MW, 248.0870. Found: MW(MS), 248.0865 (41.2%). Other significant peaks in the high resolution MS were at m/z (rel. int.): 230 $[C_{14}H_{14}OS]^+$ (11.4). 178 $[C_{10}H_{10}OS]^+$ (28.4), 177 $[C_{10}H_0OS]^+$ (55.9), 149 $[C_0H_0S]^+$ (28.4), 148 $[C_0H_8S]^+$ (48.6), 147 $[C_9H_7S]^+$ (33.2), 135 $[C_8H_7S]^+$ (23.4), 100 $[C_5H_8C_2]^+$ (41.8, A) and 71 $[C_2H_7O]^+$ (100, B); ¹³C NMR (100.6 MHz, CDCl₃): δ 4.66 (q, C-1), 25.43 (t, C-13), 32.03 (t, C-12), 67.56 (t, C-14), 70.17 (d, C-10), 73.28 (s, C-3), 83.05 (d, C-11), 90.97 (s, C-2), 123.34 (s, C-4), 126.04 (d), 126.08 (d), 127.30 (d), 131.40 (d) (C-5, C-6, C-8 and C-9), 141.86 (s, C-7).

Acetylation of 30 mg 1a with Ac₂O-pyridine at room temp. overnight followed by the usual work-up and TLC gave 30 mg 1b as a gum, IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2230 (weak), 1730, 1660, 1640, 1230, 1075, 1030, 950; MS (after repurification) m/z: 290 [M]⁺, 248, 230, 100(A), 71(B); ¹³C NMR (CDCl₃): δ 4.70 (s, C-1), 21.12 (q, Me of acetate), 24.89 (t, C-13), 29.21 (t, C-12), 67.47 (t, C-14), 71.58 (d, C-10), 73.29 (s, C-3), 89.87 (t, C-11), 90.97 (s, C-2), 123.15 (s, C-4), 125.45 (s), 125.70 (d), 126.47 (d), 131.20 (d, C-5, C-6, C-8 and C-9); 141.74 (s, C-7), 169.87 (s, C=O).

A soln of 35 mg 1a in 25 ml EtOAc was hydrogenated over 10% Pd/C for 1 hr and worked-up in the usual manner. Separation of the major product by prep. TLC (EtOAc- C_6H_6 , 1:9) gave 30 mg 2 as gum, IR $\nu_{max}^{CHCl_5}$ cm⁻¹: 3300–3600 (bonded OH), 1600, 1080, 1025 and 925; MS m/z 254 [M]⁺, 236, 100(A), 71(B).

A soln of 30 mg 2 in 10 ml Me₂CO was cooled to 0° and allowed to stand with 0.1 ml of Jones reagent at 5° for 0.5 hr.

Excess reagent was destroyed by addition of 5 ml MeOH. The mixture was dil. with H_2O and extracted with CHCl₃. The washed and dried extract was evapd and the residue purified by prep. TLC (C_6H_6 -EtOAc, 15:1) to give 20 mg 3 as a gum; IR $\nu_{mc}^{\rm CHCl_3}$ cm⁻¹: 1710, 1100, 1025, 915; CD curve (EtOH, $c2.99 \times 10^{-4}$) $\Delta \epsilon_{298} = 0.682$ (min), $\Delta \epsilon_{262} = 0.110$ (max), $\Delta \epsilon_{240} = 0.410$ (min); [Calc. for $C_{14}H_{20}O_2S$: MW 252.1184. Found: MW(MS), 252.1159 (16.9%).] Other significant peaks in the high resolution MS were at m/z (rel. int.) 153 [$C_9H_{13}S$]⁺ (35.4), 152 [$C_9H_{12}S$]⁺ (35.7), 139 [$C_8H_{11}S$]⁺ (71.3), 140 [$C_8H_{12}S$]⁺ (30.6), 123 [C_7H_7S]⁺ (68.4), 111 [C_6H_7S]⁺ (30.4), 110 [C_6H_6S]⁺ (16.3), 100 (C_5H_8O]⁺(100, A by H transfer). As expected peak **B** was absent.

Acknowledgement—Work at the Florida State University was supported in part by a grant (CA-13121) from the U.S. Public Health Service through the National Cancer Institute.

REFERENCES

- Baruah, R. N., Sharma, R. P., Thyagarajan, G., Herz. W., Govindan, S. V. and Blount, J. F. (1980) J. Org. Chem. 45, 4838.
- Chin, C., Jones, E. R. H., Thaller, V., Aplin, R. T., Durham, L. J., Cascon, S. C., Mors, W. B. and Tursch, B. M. (1965) Chem. Commun. 152.
- Cascon, S. C., Mors, W. B., Tursch, B. M., Aplin, R. T. and Durham, L. (1965) J. Am. Chem. Soc. 87, 5237 (1965).
- Chin, C., Cutler, M. C., Jones, E. R. H., Lee, J., Safe, S. and Thaller, V. (1970) J. Chem. Soc. C, 314.
- Zeisberg, R. and Bohlmann, F. (1974) Chem. Ber. 107, 3800.
- Zeisberg, F. and Bohlmann, F. (1975) Chem. Ber. 108, 1041.
- Bedford, C. T., Bhattacharjee, D., Fairbrother, J. R. F., Jones, E. R. H., Safe, S. and Thaller, V. (1976) J. Chem. Soc. Perkin Trans. 1, 735.
- 8. Quillian, J. P. and Stables, R. (1969) Pharmacol. Res. Commun. 1, 7.
- Gorinsky, C., Templeton, W. and Zaidi, S. A. H. (1973) Lloydia 36, 352.
- Czerson, H., Bohlmann, F., Stuessy, T. F. and Fischer, N. H. (1979) Phytochemistry 18, 257.
- Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.
- 12. Bohlmann, F. and Zdero, C. (1975) Chem. Ber. 108, 437.
- Bohlmann, F. and Zdero, C. (1979) Phytochemistry 18, 1736.